Issue link: https://beckershealthcare.uberflip.com/i/981659
29 Executive Briefing Sponsored by: A s hospitals and health systems work to reduce healthcare- associated infections, a number of harmful pathogens, such as Clostridium difficile, may evade traditional disinfectants and manual cleaning processes. To eliminate these pathogens from high- touch surfaces, hospitals can incorporate UV disinfection technology. Today's technology uses a subtype of ultraviolet light called UV-C. Adding treatment with UV-C into cleaning routines can help to effectively kill bacteria and pathogens and reduce HAI rates. Incomplete disinfection drives HAIs For many hospitals, current cleaning interventions may not completely address the risk of HAIs. A study published in American Journal of Infection Control found patients admitted to rooms that previously held a patient infected with a multidrug-resistant organism were significantly more likely to contract that infection. "This risk could be 1.5 to 3.5-times higher, which supports the fact that the environment can play a role in the spread of infection, and for a variety of reasons, healthcare facilities may not be cleaned and disinfected as well as they could be," says Jim Gauthier, senior clinical advisor of infection prevention at Diversey, a Charlotte, N.C.-based cleaning and hygiene product provider. Incomplete or insufficient cleaning of surfaces most commonly in contact with patients can contribute to infection rates. In fact, it is estimated that 20-40 percent of HAIs result from transmission of pathogens by a healthcare worker after touching another patient or a contaminated surface, Gauthier says. HAIs not only threaten the safety of patients and staff, but can also be a significant expense for hospitals due to longer patient stays, more treatment costs and less reimbursement for procedures. In the U.S. alone, HAIs range between $28 billion and $45 billion in annual direct hospital costs, according to a study published in Expert Review of Pharmacoeconomics & Outcomes Research. Reducing HAIs is especially important in an era of value-based medicine. In 2008, CMS began denying hospitals payment for the treatment of some conditions that occurred during a patient's hospital stay and were not present on admission. Three of the 10 hospital- acquired conditions selected for this policy involve HAIs, according to a study published in Medical Care. "An increasingly important driver of finance in healthcare, especially in the U.S., is how we perform," Gauthier says. "Performance measures, such as Methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile infection (CDI) acquisitions, factor into the reimbursements that are paid to healthcare facilities." Diversey, which provides cleaning technologies in areas from healthcare to hospitality, offers a framework for hospitals to fight off HAIs through UV-C disinfection programs. The company's portable UV-C machines disinfect hospital rooms, hard surfaces, and noncritical equipment and devices. When deciding to incorporate this technology into cleaning routines, hospital executives can examine numerous published studies providing understanding of what makes a UV-C disinfection program an effective business move, how UV-C disinfection technology works, what questions to ask when considering UV-C and how to effectively operate UV-C devices. UV-C disinfection programs eliminate bacteria that manual processes may miss Infection prevention experts agree: Thorough cleaning and disinfection of environmental surfaces are essential elements of effective infection prevention programs. However, traditional manual cleaning and disinfection practices in hospitals are often suboptimal. Inconsistent manual cleaning processes, time pressure and lack of an auditing process can affect the efficacy of manual disinfection. To be sure, no-touch disinfection technologies should not replace manual cleaning and disinfection processes. However, adjunct technologies, such as UV-C disinfection machines, can become a critical part of how healthcare settings control HAIs, Gauthier says. Here are five reasons healthcare settings are adding UV-C disinfection machines to their infection control efforts. 1. Manual cleaning is inconsistent. Hospitals need the right products and reliable disinfection procedures. Manual disinfection can certainly be effective, but the problem is this: no two rooms will ever be cleaned to exactly the same specifications, regardless of how explicit or detailed the standard procedure may be. Human error will always be part of manual disinfection. "You can never over-emphasize, the importance of evaluating current cleaning and disinfection protocol and continuous improvement, yet it may not be enough," Gauthier says. By utilizing UV disinfection, the inevitable differences in the disinfection process from room to room become less pronounced, further protecting patients and facilities from healthcare-acquired infections. Healthcare settings can benefit from the additional assurance afforded by the application of UV-C disinfection devices. 2. Manual disinfection isn't 100 percent efficacious. Numerous studies show standard manual cleaning or disinfection of surfaces can reduce, but often does not eliminate, important pathogens such as C. diffcile and MRSA. Of 1,917 patient rooms cleaned using standard processes and detergent, nearly 25 percent still contained strains of MRSA, according to a 2014 study in BMJ Journals. This finding suggests hospitals cannot rely on manual cleaning alone to fully eradicate pathogens and deter HAIs. 3. Antibiotic resistant organisms can survive on surfaces for weeks to months. "Even viruses, such as noroviruses, can survive on surfaces outside the body for seven to 14 days without much difficulty," Gauthier says. Research into UV-C's ability to eliminate antibiotic-resistant organisms is promising. There are numerous studies supporting the efficacy of UV-C in reducing the viability of a broad range of problematic pathogens, particularly antibiotic resistant strains. For example, a 2017 study published in the Journal of Applied Microbiology subjected antibiotic resistant strains of Escherichia coli (E. coli) to UV energy, and found UV disinfection processes dramatically reduced the survival of antibiotic-resistance genes of E. coli. Hospitals can use UV energy as a disinfecting technology in addition to manual cleaning and disinfection to help eliminate the particularly robust organisms that cleaning wipes and disinfectants may not reach. 4. UV-C helps cover surfaces wipes and chemicals may miss. UV-C machines work to fill the gaps that wipes and chemicals miss when cleaning a patient room, which can help hospitals achieve the best possible cleaning practices. UV-C machines, which serve as a 'no touch' method of room decontamination, can reduce key pathogens on surfaces in patient rooms, according to a study published in Current Opinion in Infectious Diseases. The study authors recommend using a 'no touch' system for terminal room disinfection after discharging patients to reach areas of patient rooms that are not easily accessible for cleaning via wipes and chemicals, such as keyboards, monitors and workstations on wheels. State of the art UV-C technologies offer portability and compact footprints facilitating terminal cleaning and daily use, helping to minimize the buildup of pathogens over time. 5. UV-C can help meet patient expectations for cleanliness. When asked what impressed them most about the healthcare industry, the greatest number of respondents chose a visible commitment to infection prevention, according to a survey of 1,000 patients conducted by the Health Industry Distributors Association. "Cleaning and disinfection is something that is very important to patients," Gauthier says. "Utilizing a UV system is a very visible way of showing patients and families that the hospital is committed to reducing infections as best they can." The power of light: How hospitals can harness UV energy to reduce HAIs